Synthesis of 7-trifluoromethyl- and 7-trichloromethylnorkhellins

Vyacheslav Ya. Sosnovskikh* and Valentin A. Kutsenko

Department of Chemistry, A. M. Gor'ky Urals State University, 620083 Ekaterinburg, Russian Federation. Fax: +7 3432 61 5978; e-mail: Vyacheslav.Sosnovskikh@usu.ru

10.1070/MC2000v010n06ABEH001312

The title compounds were prepared by the condensation of khellinone with ethyl trifluoroacetate and trichloroacetonitrile.

The natural furochromone khellin (4,9-dimethoxy-7-methyl-5H-furo[3,2-g][1]benzopyran-5-one) **1** obtained from the fruits and seeds of *Ammi visnaga L* is a well-known medicinal substance. It exhibits a high antiatherosclerotic activity and is a constituent of various medicinal preparations.

As an extension of previous studies^{4–10} concerning 2-polyhaloalkylchromones, we replaced a Me group at the 7-position of khellin **1** by CF₃ and CCl₃ groups and prepared 7-trifluoromethyl- and 7-trichloromethylnorkhellins **2** and **3**. These latter are of considerable interest as highly reactive building blocks for the synthesis of new khellin derivatives.

It is well known¹¹ that condensation products of 2-hydroxy-acetophenones with ethyl trifluoroacetate exist only in a cyclic semiketal form in both a crystalline state and in solution. We found that the Claisen condensation of khellinone (5-acetyl-6-hydroxy-4,7-dimethoxybenzo[*b*]furan) **4**, which was obtained by the alkaline hydrolysis of **1**,¹² with ethyl trifluoroacetate in the presence of LiH in THF afforded furochromone **5**, which is a cyclic form of the corresponding β-diketone. Previously,¹³ 7-hydroxydihydrokhellin, a nonfluorinated analogue of compound **5**, was synthesised by the treatment of khellinone with *tert*-butyl lithioacetate in toluene at 100 °C. The boiling of furochromanone **5** in ethanol or acetic acid with a catalytic amount of hydrochloric acid afforded 7-trifluoromethylnorkhellin **2** in 80% yield.[†]

 † 4,9-Dimethoxy-7-trifluoromethyl-5H-furo[3,2-g][1]benzopyran-5-one 2: yield 80%, mp 164–165 °C (acetic acid). ^1H NMR (250 MHz, CDCl_3) δ : 4.08 [s, 3H, MeO(9)], 4.21 [s, 3H, MeO(4)], 6.60 (s, 1H, =CH), 7.05 [d, 1H, H(3), J 2.4 Hz], 7.68 [d, 1H, H(2), J 2.4 Hz]. IR (Vaseline oil, ν /cm $^{-1}$): 3150 (=CH), 1670, 1655 (C=O), 1610 (C=C, arom.), 1550 (furan ring). Found (%): C, 53.60; H, 2.81. Calc. for C $_{14}\text{H}_{9}\text{F}_{3}\text{O}_{5}$ (%): C, 53.52; H, 2.89.

7-Hydroxy-4,9-dimethoxy-7-trifluoromethylfuro[3,2-g]chroman-5-one 5: yield 63%, mp 177–178 °C (EtOH). ¹H NMR (400 MHz, CDCl₃) δ: 3.07 (AB system, $\Delta\delta$ 0.14, 2H, CH₂, J_{AB} 16.4 Hz), 4.03 (s, 3H, MeO), 4.05 (s, 3H, MeO), 5.03 (s, 1H, OH), 6.88 [d, 1H, H(3), J 2.3 Hz], 7.50 [d, 1H, H(2), J 2.3 Hz]. ¹H NMR (250 MHz, [²H₆]DMSO) δ: 2.77 [d, 1H, CHH, J_{AB} 16.0 Hz], 3.31 [d, 1H, CHH, J_{AB} 16.0 Hz], 3.94 (s, 3H, MeO), 3.98 (s, 3H, MeO), 7.20 [d, 1H, H(3), J 2.3 Hz], 7.97 [d, 1H, H(2), J 2.3 Hz], 8.72 (d, 1H, OH, J 1.6 Hz). IR (Vaseline oil, ν /cm⁻¹): 3360 (OH), 3150 (=CH), 1660 (C=O), 1600 (arom.), 1550 (furan ring). Found (%): C, 50.54; H, 3.38. Calc. for C₁₄H₁₁F₃O₆ (%): C, 50.61; H, 3.34

Note that the ^1H NMR spectrum of compound 5 in $[^2\text{H}_6]\text{DMSO}$ exhibits the signal due to the OH proton as a doublet at δ 8.72 ppm with J 1.6 Hz because of the spin–spin interaction with the downfield proton of the CH $_2$ group. This fact is indicative of their *trans*-diaxial arrangement at which the W-conformation becomes possible. 14 In a CDCl $_3$ solution, the hydroxyl proton gives a singlet at 5.03 ppm. Moreover, on going from CDCl $_3$ to $[^2\text{H}_6]\text{DMSO}$, the doublets of the furan protons H(2) and H(3) become downfield shifted by 0.47 and 0.32 ppm, respectively. This is probably a result of solvation effects, which are responsible for deshielding these protons. 15

In contrast to ethyl trifluoroacetate, condensation with the participation of ethyl trichloroacetate is often accompanied by side reactions resulting in the degradation to chloroform¹⁶ and dichlorocarbene.¹⁷ In this connection, to synthesise 7-trichloromethylnorkhelline 3, we used the reaction of khellinone 4 with trichloroacetonitrile in the presence of *N*-methylanilinomagnesium bromide. This reaction afforded aminoenone 6 in 37% yield. The treatment of 6 with concentrated HCl at room temperature gave 7-trichloromethylnorkhelline 3 in 87% yield.[‡]

It was found⁵ that the condensation of 2-hydroxy-4,6-dimethylacetophenone with trichloroacetonitrile resulted in 2-amino-5,7-dimethyl-2-trichloromethylchroman-4-one. Thus, it might be expected that an analogous reaction with khellinone **4**, which

 ‡ 4,9-Dimethoxy-7-trichloromethyl-5H-furo[3,2-g][1]benzopyran-5-one 3: yield 87%, mp 172–173 °C (EtOH). ¹H NMR (250 MHz, CDCl_3) δ : 4.10 [s, 3H, MeO(9)], 4.22 [s, 3H, MeO(4)], 6.86 (s, 1H, =CH), 7.05 [d, 1H, H(3), J 2.3 Hz], 7.67 [d, 1H, H(2), J 2.3 Hz]. IR (Vaseline oil, ν /cm-¹): 3120 (=CH), 1655 (C=O), 1640, 1620, 1605 (sh) (C=C, arom.), 1550 (furan ring). Found (%): C, 46.05; H, 2.55. Calc. for C $_{14}$ H $_{9}$ Cl $_{3}$ O $_{5}$ (%): C, 46.25; H, 2.50.

6-Hydroxy-4,7-dimethoxy-5-[3-amino-4,4,4-trichlorobut-2(Z)-enoyl]-benzo[b]furan **6**: yield 37%, mp 125–126 °C (benzene). ¹H NMR (250 MHz, CDCl₃) δ: 4.00 [s, 3 H, MeO(7)], 4.07 [s, 3 H, MeO(4)], 6.83 [d, 1 H, H(3), J 2.3 Hz], 7.28 (t, 1 H, =CH, J 1.0 Hz), 7.48 [d, 1 H, H(2), J 2.3 Hz], 7.83 (br. s, 2 H, NH₂), 12.85 (s, 1 H, OH). ¹H NMR (250 MHz, [²H₆]DMSO) δ: 3.90 [s, 3 H, MeO(7)], 3.97 [s, 3 H, MeO(4)], 6.62 (s, 1 H, =CH), 7.11 [d, 1 H, H(3), J 2.2 Hz], 7.87 [d, 1 H, H(2), J 2.2 Hz], 8.97 (br. s, 2 H, NH₂), 11.48 (s, 1 H, OH). IR (Vaseline oil, ν /cm⁻¹): 3420, 3270 (NH₂), 3150 (w, =CH), 1605, 1515 (C=O, C=C, NH₂). Found (%): C, 44.10; H, 3.38; N, 3.50. Calc. for C₁₄H₁₂Cl₃NO₅ (%): C, 44.18; H, 3.18; N, 3.64.

bears an *ortho*-MeO group with respect to the carbonyl group, will also give furochromanone **7**. However, we found that the product of this reaction is not prone to ring—chain tautomerism and exists only as open-chain aminoenone **6** in both a crystalline state and CDCl₃ or [²H₆]DMSO solutions. Cyclic chromanone form **7** was not detected in these solvents; this is probably due to the fact that the steric hindrance with a methoxy group is lower than that with a methyl group, ¹⁸ and the methoxy group does not prevent the appearance of a planar conformation stabilised by intramolecular hydrogen bonds.

The ^1H NMR spectra of aminoenone 6 measured in $[^2\text{H}_6]\text{DMSO}$ and CDCl $_3$ solutions exhibited a signal due to the vinyl proton. On going from $[^2\text{H}_6]\text{DMSO}$ to CDCl $_3$, this signal was downfield shifted by 0.66 ppm. It is likely that the molecule of compound 6 has a near-planar di-s-cis conformation in a CDCl $_3$ solution because of two intramolecular hydrogen bonds. In this case, the vinyl proton is close to oxygen of the methoxy group and more strongly deshielded than that in a $[^2\text{H}_6]\text{DMSO}$ solution, where the coplanarity is broken because of the rupture of intramolecular hydrogen bonds. In a CDCl $_3$ solution, the vinyl proton manifests itself as a triplet with J 1.0 Hz because of the spin–spin interaction with protons of the NH $_2$ group; this is a characteristic feature of ^1H NMR spectra of β -amino- β -tri-chloromethylvinyl ketones. 19

In summary, note that the modification of natural compounds by the replacement of a methyl group with a trihalomethyl group is of considerable interest because electron-acceptor CF₃ and CCl₃ groups affect the electron-density distribution in the molecule and hence the reactivity towards nucleophilic agents. Previously,²⁰ similar studies were performed in the series of retinoids, steroids, purines and pyrimidines. However, there is no data concerning the target-oriented synthesis of halogenated analogues of natural 2-methylchromones, except for the synthesis of 7-chloromethyland 7-iodomethylnorvisnagin,^{21,22} 2- and 3-fluorokhellin²³ and 7-iodomethylnorkhellin.²⁴ This work is the first successful attempt to synthesise trihalomethylfurochromones, highly reactive and promising synthons for the preparation of various heterocyclic systems, which can exhibit biological activity.

References

- 1 A. Kandil and E. E. Galal, J. Drug Res., 1975, 7, 109.
- 2 R. B. Gammill, C. E. Day and P. E. Schurr, J. Med. Chem., 1983, 26, 1672.
- 3 M. D. Mashkovskii, Lekarstvennye sredstva (Drugs), Vilnius, 1993, vol. 1, p. 396 (in Russian).
- 4 V. Ya. Sosnovskikh and I. S. Ovsyannikov, Zh. Org. Khim., 1993, 29, 89 (Russ. J. Org. Chem., 1993, 29, 74).
- 5 V. Ya. Sosnovskikh, Izv. Akad. Nauk, Ser. Khim., 1998, 362 (Russ. Chem. Bull., 1998, 47, 354).
- 6 V. Ya. Sosnovskikh, V. A. Kutsenko and D. S. Yachevskii, Mendeleev Commun., 1999, 204.
- 7 V. Ya. Sosnovskikh and V. A. Kutsenko, *Izv. Akad. Nauk, Ser. Khim.*, 1999, 817 (*Russ. Chem. Bull.*, 1999, 48, 812).
- 8 V. Ya. Sosnovskikh, Yu. G. Yatluk and V. A. Kutsenko, *Izv. Akad. Nauk*, Ser. Khim., 1999, 1825 (Russ. Chem. Bull., 1999, 48, 1800).
- 9 V. Ya. Sosnovskikh and V. A. Kutsenko, *Mendeleev Commun.*, 1999, 206.
- 10 V. Ya. Sosnovskikh and V. A. Kutsenko, *Izv. Akad. Nauk, Ser. Khim.*, 1999, 2140 (*Russ. Chem. Bull.*, 1999, 48, 2117).
- 11 E. Morera and G. Ortar, Tetrahedron Lett., 1981, 22, 1273.
- 12 A. Schönberg and A. Sina, J. Am. Chem. Soc., 1950, 72, 1611.
- 13 K. Nagasawa, H. Kanbara, K. Matsushita and K. Ito, *Heterocycles*, 1988, 27, 1159.
- 14 C. A. Kingsbury, R. S. Egan and T. J. Perun, J. Org. Chem., 1970, 35, 2913.
- H. Günther, NMR Spectroscopy, George Thieme Verlag, Stuttgart, 1973 (in German).
- 16 H. Meerwein and H. Sönke, Ber., 1931, 64, 2375.
- 17 W. E. Parham and E. E. Schweizer, J. Org. Chem., 1959, 24, 1733.
- 18 D. C. Nonhebel, Tetrahedron, 1968, 24, 1869.
- V. Ya. Sosnovskikh and I. S. Ovsyannikov, Zh. Org. Khim., 1990, 26, 2086 [J. Org. Chem. USSR (Engl. Transl.), 1990, 26, 1801].
- 20 J. T. Welch, Tetrahedron, 1987, 43, 3123.
- 21 A. Schonberg, N. Badran and N. A. Starkowsky, J. Am. Chem. Soc., 1955, 77, 1019.
- 22 T. A. Geissman, J. Am. Chem. Soc., 1951, 73, 3355.
- 23 S. A. Nash and R. B. Gammill, Tetrahedron Lett., 1987, 28, 4003.
- 24 R. B. Gammill, J. Org. Chem., 1984, 49, 5035.

Received: 7th April 2000; Com. 00/1638